刘登才,博士,教授。聚焦于小麦外源基因的发掘与育种利用研究。发现了控制染色体自动加倍、促进染色体重组的遗传操作工具新位点,并用于染色体工程材料创制。建立了“育种原始种质-顶交-两段选择”渗入育种体系,利用野生资源选育蜀麦1963(含灌浆快、早熟、高蛋白基因NAM-B1)、蜀麦1675(YrAS2388)、蜀麦1868(Yr15和Pm21)、蜀麦830(重穗)、蜀麦114(优质弱筋)等小麦新品种。获国家自然科学奖二等奖(第5)、四川省科技进步一等奖5项(第1、2、3、8、10)。入选新世纪国家百千万人才工程、中国科学院百人计划、“天府青城计划”杰出科学家等。
招收作物遗传育种研究生、博士后。Email:dcliu7@sicau.edu.cn
Reviews and book chapters
李生科等. 基于原始种质的小麦育种技术体系. 四川农业大学学报, 2023, 6: 961-972.
郝明等. 渗入杂交与小麦杂种优势. 科学通报, 2022, 67: 3165-3174.
郝明等. 合成六倍体小麦的遗传育种. 植物遗传资源学报,2022, 23: 40-48.
刘登才等. 小麦族的基因组显性及其育种学意义. 作物学报, 2020, 46: 1465-1473.
Dengcai Liu. Towards cultivar-oriented gene discovery for better crops. The Crop Journal, 2024, 12: 670–675.
Ming Hao et al. The resurgence of introgression breeding, as exemplified in wheat improvement. Frontiers in Plant Science 2020,11: 252.
Dengcai Liu et al. Wheat breeding in the hometown of Chinese Spring. The Crop Journal 2018, 6: 82-90
Li A et al. Synthetic hexaploid wheat: yesterday, today, and tomorrow. Engineering 2018,4: 552-558.
Aili Li et al. Making the bread: insights from newly synthesized allohexaploid Wheat. Molecular Plant, 2015, 8: 847-859.
Yang W et al. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J Genet Genomics 2019, 36: 539-546.
Chi Yen, Junliang Yang et al. Biosystematics of Triticeae, Volume I. Triticum-Aegilops complex. Springer, 2020, p1-265.
Dengcai Liu et al. Allopolyploidy and interspecific hybridization for wheat improvement. In: Annaliese S. Mason ed. Polyploidy and Hybridization for Crop Improvement. CRC Press, 2016, p27-52.
Dengcai Liu et al. Distant Hybridization: A tool for interspecific manipulation of chromosomes. In Alien Gene Transfer in Crop Plants, Volume 1. Springer New York, 2014, p25-42.
Research papers
Yanling Hu et al. A head-to-head NLR gene pair from wild emmer confers stripe rust resistance in wheat. Nature Genetics, 2025, https://doi.org/10.1038/s41588-025-02207-0
Cavalet-Giorsa E. et al. Origin and evolution of the bread wheat D genome. Nature, 2024, 633: 848–855.
Li YQ et al. Identification and fine-mapping of QYrAS286-2BL conferring adult-plant resistance to stripe rust in cultivated emmer wheat. Theoretical and Applied Genetics, 2024, 137:5
Wang F et al. Pyramiding of adult-plant resistance genes enhances all-stage resistance to wheat stripe rust. Plant Disease, 2023, 107:879-885
Gaurav K. et al. Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nature Biotechnology, 2022, 40, 422–431.
Li A et al. Wheat breeding history reveals synergistic selection of pleiotropic genomic sites for plant architecture and grain yield. Molecular Plant, 2022, 15:16.
Chaozhong Zhang et al. An ancestral NB-LRR with duplicated 3’UTRs confers stripe rust resistance in wheat and barley. Nature Communications, 2019, 10: 4023.
Ming Hao et al. A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat. Theoretical and Applied Genetics, 2019, 132: 132:2285-2294
Chaolan Fan et al. Genetic mapping of a major QTL promoting homoeologous chromosome pairing in a wheat landrace. Theoretical and Applied Genetics, 2019, 132:2155-2166
Li A. et al. mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. The Plant Cell, 2014, 26: 1878-1900.