四川农业大学首页 / 小麦所信箱 / 【中文/ English
当前位置:  首页>>研究队伍>>研究队伍详情

刘登才

点击数:5053发布时间:2014-10-28 00:00:00 来源: 四川农业大学·小麦研究所

  姓名:刘登才  
学历:博士 职称:研究员,博士导师
职务:所长 联系电话:86-28-82650312
电子信箱:dcliu7@yahoo.com

传真:86-28-82650350


个人简介 1992年7月、1995年7月、1998年7月在四川农业大学分获农学学士、硕士和博士学位。2002年10月-2003年9月,美国South Dakota State University访问学者。从1995年7月至今,在四川农业大学小麦研究所工作。主研获国家自然科学奖二等奖1项、四川省科技进步一等奖3项,选育了8个小麦新品种,发表SCI收录论文70多篇。曾入选中国科学院“百人计划”(2009-2014),“新世纪百千万人才工程”国家级人选,享受国务院政府特殊津贴,教育部新世纪优秀人才计划,四川省学术与技术带头人,四川省有突出贡献的优秀专家。

研究生招生作物遗传育种专业硕士和博士研究生(已指导毕业博士13名,硕士29名)

主要研究内容 

1. 小麦作为研究远缘杂交和异源多倍化的“模式”,研究远缘杂交育种的遗传学基础,并据此设计小麦外源基因资源发掘新技术前聚焦于“增加小麦遗传多样性的技术原理研究与应用”:(1)远缘杂种产生,染色体配对,未减数配子形成等过程的遗传基础;(2)远缘杂种后代基因组变异及机制;(3)利用未减数配子、ph基因、基因组变异等途径创制新材料。 

2. 小麦育种:(1)高产抗病优质小麦新品种选育;(2)外源或新型遗传变异导入小麦品种。

 


远缘杂交研究章节

1. Allopolyploidy and interspecific hybridization for wheat improvement. In: Annaliese S. Mason ed. Polyploidy and Hybridization for Crop Improvement. CRC Press, p27-52, 2016.

2. Distant Hybridization: A tool for interspecific manipulation of chromosomes. In Alien Gene Transfer in Crop Plants, Volume 1 (pp. 25-42). Springer New York, 2014.  

近期部分论文

1.  The abundance of homoeologue transcripts is disrupted by hybridization and is partially restored by genome doubling in synthetic hexaploid wheat." BMC genomics, 2017, 18(1): 149.

2.  Chromosome-specific sequencing reveals an extensive dispensable genome component in wheat. Scientific reports, 2016, 6.

3.  Cytological identification of an Aegilops variabilis chromosome carrying stripe rust resistance in wheat. Breeding science, 2016, 66(4), 522-529.

4.  Recurrent selection for wider seedling leaves increases earlybiomass and leaf area in wheat (Triticum aestivum L.). Journal of Experimental Botany, 2015, 66:1215–1226.

5.  Making the bread: insights from newly synthesized allohexaploid Wheat. Molecular Plant, 2015, 8:847-859.

6.  Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat. Plant Biology, 2015, 17:904-913. 

7.  Genome-wide characterization of developmental stage-and tissue-specific transcription factors in wheat. BMC Genomics, 2015, 16(1), 125. 

8.  Quantitative trait locus mapping for growth duration and its timing components in wheat. Molecular Breeding, 2015, 35:44. 

9.  Divergence in homoeolog expression of the grain length-associated gene GASR7 during wheat allohexaploidization. The Crop Journal, 2015, 3: 1-9.

10. mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. Plant Cell (2014) 26: 1878–1900.

11. QTug. sau-3B Is a Major Quantitative Trait Locus for Wheat Hexaploidization. G3: Genes|Genomes|Genetics 2014 4(10): 1943-1953. 

12. The detection of a de novo allele of the Glu‑1Dx gene in wheat-rye hybrid offspring.  Theor Appl Genet (2014) 127:2173–2182. 

13. Population structure and linkage disequilibrium in six-rowed barley landraces from the Qinghai-Tibetan Plateau. Crop Sci. (2014) 54:2011–2022. 

14. Amphitelic orientation of centromeres at metaphase I is an important feature for univalent-dependent meiotic nonreduction. Journal of Genetics (2014) 93(2):531-534. 

15. Production of hexaploid triticale by a synthetic hexaploid wheat-rye hybrid method. Euphytica, 193:347-357, 2013. 

16. Stripe rust resistance in Aegilops tauschii germplasm. Crop Science, 53:2014-2020, 2013. 

17. In situ hybridization analysis indicates that 4AL-5AL-7BS translocation preceded subspecies differentiation of Triticum turgidum L. Genome, 56:303-305, 2013. 

18. Microsatellite mutation rate during allohexaploidization of newly resynthesized wheat. International Journal of Molecular Sciences, 13:12533-12543, 2012. 

19. Genetic map of Triticum turgidum based on a hexaploid wheat population without genetic recombination for D genome. BMC Genetics, 13:69, 2012.



下一篇:魏育明

上一篇:周永红