刘登才-四川农业大学|小麦研究所
四川农业大学首页 / 小麦所信箱 / 【中文/ English
新闻热点
当前位置:  网站首页 >>研究队伍 正文

刘登才

点击数:发布时间:2014-10-28 00:00:00 来源: 四川农业大学·小麦研究所



姓名:刘登才


学历:博士

职称:研究员、博导

职务:所长

电话:86-28-82650312

信箱:dcliu7@yahoo.com

传真:86-28-82650350





个人简介1992年7月、1995年7月、1998年7月在四川农业大学分获农学学士、硕士和博士学位。2002年10月-2003年9月,美国South Dakota State University访问学者。主研获国家自然科学奖二等奖1项、四川省科技进步一等奖4项,选育了蜀麦969、蜀麦830、蜀麦580等小麦新品种,在SCI收录刊物发表论文100余篇。曾入选中国科学院百人计划、新世纪百千万人才工程国家级人选,享受国务院政府特殊津贴,四川省学术与技术带头人。


研究生招生作物遗传育种专业硕士和博士研究生(已指导毕业博士14名,硕士31名)。


主要研究内容远缘杂交和异源多倍化遗传学,设计外源基因利用新技术,培育新品种。



Recent book  chapters and reviews

1. Allopolyploidy and interspecific hybridization for wheat improvement. In: Annaliese S. Mason ed. Polyploidy and Hybridization for Crop Improvement. CRC Press, p27-52, 2016.

2. Distant Hybridization: A tool for interspecific manipulation of chromosomes. In Alien Gene Transfer in Crop Plants, Volume 1 (pp. 25-42). Springer New York, 2014.

3. Wheat breeding in the hometown of Chinese Spring. The Crop Journal, 2018, 6: 82-90.

4. Synthetic hexaploid wheat: Yesterday, today, and tomorrow. Engineering, 2018, https://doi.org/10.1016/j.eng.2018.07.001.

5. Making the bread: insights from newly synthesized allohexaploid Wheat. Molecular Plant, 2015, 8:847-859.

6. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J. Genet. Genomics 2009, 36: 539-546.


     Recently selected research papers

7. Introgression of powdery mildew resistance gene Pm56 on rye chromosome arm 6RS into wheat. Front. Plant Sci., 2018, 9:1040.

8. Fluorescence in situ hybridization karyotyping reveals the presence of two distinct genomes in the taxon Aegilops tauschii. BMC Genomics, 2018,19:3.

9. The transfer to and functional annotation of alien alleles in advanced wheat lines derived from synthetic hexaploid wheat. Plant Physiology and Biochemistry, 2018, 130: 89-93.

10. Sequence divergence between spelt and common wheat. Theoretical and Applied Genetics, 2018, https://doi.org/10.1007/s00122-018-3064-z.

11. The abundance of homoeologue transcripts is disrupted by hybridization and is partially restored by genome doubling in synthetic hexaploid wheat." BMC genomics, 2017, 18(1): 149.

12. Uncovering the dispersion history, adaptive evolution and selection of wheat in China. Plant Biotechnol. J., 2017, https://doi.org/10.1111/pbi.12770.

13. Mapping stripe rust resistance gene YrZH22 in Chinese wheat cultivar Zhoumai 22 by bulked segregant RNA-Seq (BSR-Seq) and comparative genomics analyses. Theor Appl Genet, 2017, DOI 10.1007/s00122-017-2950-0.

14. ThMYC4E, candidate Blue aleurone 1 gene controlling the associated trait in Triticum aestivum. PLoS ONE, 2017, 12(7): e0181116.

15. Chromosome-specific sequencing reveals an extensive dispensable genome component in wheat. Scientific reports, 2016, 6.

16. Cytological identification of an Aegilops variabilis chromosome carrying stripe rust resistance in wheat. Breeding science, 2016, 66(4), 522-529.

17. Recurrent selection for wider seedling leaves increases early biomass and leaf area in wheat (Triticum aestivum L.). Journal of Experimental Botany, 2015, 66:1215–1226.

18. Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat. Plant Biology, 2015, 17:904-913.

19. Genome-wide characterization of developmental stage-and tissue-specific transcription factors in wheat. BMC Genomics, 2015, 16(1), 125.

20. Quantitative trait locus mapping for growth duration and its timing components in wheat. Molecular Breeding, 2015, 35:44.

21. Divergence in homoeolog expression of the grain length-associated gene GASR7 during wheat allohexaploidization. The Crop Journal, 2015, 3(1): 1-9.

22. mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. Plant Cell (2014) 26: 1878–1900.

23. QTug. sau-3B Is a Major Quantitative Trait Locus for Wheat Hexaploidization. G3: Genes|Genomes|Genetics 2014 4(10): 1943-1953.

24. The detection of a de novo allele of the Glu1Dx gene in wheat-rye hybrid offspring. Theor Appl Genet (2014) 127:2173–2182.

25. Population structure and linkage disequilibrium in six-rowed barley landraces from the Qinghai-Tibetan Plateau. Crop Sci. (2014) 54:2011–2022.

26. Amphitelic orientation of centromeres at metaphase I is an important feature for univalent-dependent meiotic nonreduction. Journal of Genetics (2014) 93(2):531-534.

27. Production of hexaploid triticale by a synthetic hexaploid wheat-rye hybrid method. Euphytica, 193:347-357, 2013.

28. Stripe rust resistance in Aegilops tauschii germplasm. Crop Science, 53:2014-2020, 2013.

29. In situ hybridization analysis indicates that 4AL-5AL-7BS translocation preceded subspecies differentiation of Triticum turgidum L. Genome, 56:303-305, 2013.

30. Microsatellite mutation rate during allohexaploidization of newly resynthesized wheat. International Journal of Molecular Sciences, 13:12533-12543, 2012.

31. Genetic map of Triticum turgidum based on a hexaploid wheat population without genetic recombination for D genome. BMC Genetics, 13:69, 2012.


下一篇:颜泽洪

上一篇:周永红